UNIVERSITA DI PISA

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Master Primo Livello in Cybersecurity

DEMIoT:

a secure microservices IoT environment

Relatore: Candidato:
Prof: Pagano Michele Samuele Padula
%I-M @Qéb/\’o

ANNO ACCADEMICO 2023/2024

CONTENTS

Contents

1 Project Goals

2 Components and architecture

2.1 Components
2.1.1 Docker
2.1.2 Mosquitto
2.1.3 PKIEJBCA........

2.2 Architecture

3 Deployment: structure and interactions

3.1 Configuration of Docker environment
3.2 Configuration of PKIEJBCA
3.3 Integration between EJBCA and application containers
3.3.1 sidebroker Lo L
3.3.2 publisher and subscriber

3.4 Configuration of Mosquitto broker

4 Proof of Concept

11
11
14
17
17
22
25

27

Chapter 1

Project Goals

This report will outline the fundamental goals and implementation strategies of a
project that focuses on the creation of a lab in the Docker environment. This lab is
aimed at implementing the Mosquitto MQTT broker and managing client authen-
tication using digital certificates. A key element of this process is the integration of
an Open Source Public Key Infrastructure (PKI), specifically the use of EJBCA to
issue the necessary certificates. The primary objective of this initiative is to provide
a reliable and secure laboratory environment for the development, testing and prac-
tical demonstration of the integration of Mosquitto MQTT as a messaging broker,
combined with a rigorous client authentication process based on digital certificates.
This implementation provides an in-depth exploration of MQTT’s capabilities in
an advanced security context, as well as offering a replicable model for real-world
operational environments. Throughout this report, key steps for configuring the
Docker environment, installing and configuring the Mosquitto MQTT broker, and
implementing client authentication using digital certificates issued by the EJBCA
Open Source PKI system will be detailed. In addition, the benefits and security
implications of this architecture will be examined, along with recommended best
practices for managing and maintaining a secure and functional MQTT environ-
ment. Through this report, we aim to provide comprehensive and detailed guid-
ance on the deployment process, highlighting the inherent benefits of a Mosquitto
MQTT-based secure IoT messaging solution and emphasizing the crucial importance
of authentication via digital certificates issued by a trusted PKI such as EJBCA.

Chapter 2

Components and architecture

2.1 Components

2.1.1 Docker

The adoption of Docker as a virtualization environment has proven crucial for cre-
ating an isolated and highly replicable environment for the IoT lab. Its ability to
efficiently containerize applications and their dependencies, as well as its ease of
deployment and management, makes Docker the ideal choice for creating a con-
sistent and easily replicable environment. In addition, Docker simplifies resource
management and offers a high degree of flexibility in deploying, testing and deploy-
ing the entire stack of applications and services required for the IoT lab. Finally,
the handling of name resolution already provided by the Docker environment and
the isolation of different networks was one of the key reasons for its selection.

2.1.2 Mosquitto

Selection of Mosquitto by Eclipse Foundation as an MQTT broker is based on its
proven reliability in handling the MQTT protocol, which is widely used for commu-
nication between IoT devices. Its light weight and scalability make it an optimal
choice for handling large volumes of messages with a low impact on system re-
sources. In addition, its wide adoption in the IoT community provides a mature
support ecosystem and continuous development of new features and enhancements.

2.1.3 PKI EJBCA

The adoption of the EJBCA PKI by PrimeKey has proven to be critical for the
reliable management of digital certificates required for client and MQTT broker
authentication. The robustness and wide range of features offered by EJBCA enable
the secure generation, management and revocation of certificates, ensuring a high
level of security in the IoT environment. EJBCA’s flexibility and adaptability align
perfectly with the needs of an infrastructure that requires dynamic deployment and

2.2 Architecture 8

secure management of digital certificates for device authentication. In addition,
the ability to interact with its REST API interface enabled integration with other
architectural components.

2.2 Architecture

The PKI plays a central role within the developed architecture as it allows all other
application components to communicate in an authenticated and encrypted manner.
In fact, the PKI exposes two ports, 8080 /tcp and 8443 /tcp, HTTP and HTTPS, re-
spectively, for simplified management of users and certificates via the Web interface
and for communication with the REST API interface. The MariaDB database has
been brought back into the architecture as part of the solution deployment, but it
is a "hidden" component in the eyes of us end users. The various MQTT clients
as well as the Mosquitto broker interact with the EJBCA API via HT'TP protocol
to request the generation of a digital certificate in X.509 format. All application
communications, on the other hand, between the MQTT clients and the Mosquitto
broker take place using MQTT over TLS. The broker exposes only port 8883/tcp
through which clients communicate with the server. Finally, to conduct connection
tests with the broker, a custom Ubuntu-based image with some of the tools needed
to communicate with the broker was chosen as the MQTT clients. User-defined
Bridge networks in Docker were chosen. These are custom networks created by the
user to connect Docker containers. These networks provide isolation and efficient
communication between containers in the same Docker environment. They work
by allowing containers in the same network to communicate with each other using
container names as hostnames and allowing developers to define custom network
configurations, such as IP address and subnet, for containers within the network.
User-defined bridge networks provide a controlled and isolated environment for com-
munication between containers, enabling better management of network resources
and providing greater security and flexibility in the Docker environment. In or-
der for two containers to be able to communicate, they must belong to the same
bridge network. In particular, it was decided to allow only client communication
to the PKI via the network access-ejbca-net and the broker broker-net and
broker communication with the PKI and clients via the networks publisher-net
and subscriber-net. Any communication between MQTT clients turns out to be
segregated at the network level.

2.2 Architecture

broker—net
172.18.0.0/15

(on)

o j sidebroker
vbuntu

broker

8883/tcp

REST API
(HTTP)

access—ejbca-net
172.24.0.0/15

I I EJBCA

PKI by PrimeKey*

8080/tcp, BUY3/tep

subscribers-net

publishers—net backend-ejbca—net:

172.20.0.8/15 172.26.6.0/15 172.22.0.0/15
=< =
* >) maosguitto_pub 4 mosquitto_sub
vbuntu
ubuntu MariaDB
publisher subscriber

Figure 2.1: Docker architecture

11

Chapter 3

Deployment: structure and
interactions

In this chapter we will address the various steps in order to properly install all the
components of the presented solution. All the necessary code and configuration files
can be found on the following GitHub repository https://github.com/padowla/
DEMIoT.

3.1 Configuration of Docker environment

For the implementation of the project, Docker was chosen to be installed, specifically
the installation was done on an Ubuntu 22.04.3 LTS machine, but by its nature, this
lab is replicable on different platforms as well. In addition, an additional level of vir-
tualization could be added by running Docker within a virtual machine running in a
Type 1 or Type 2 Hypervisor. [3]|. In addition, it was necessary to install the Docker
Compose tool in order to more easily manage a multi-container environment. Com-
pose is a tool for defining and running multi-container Docker applications. With
Compose, you use a YAML file to configure your application’s services. Then, with
a single command, you create and start all the services from your configuration.|2]
The docker compose YAML file used is as follows:

version: "3.9"
networks:
broker -net:
driver: bridge
ipam:
config:
- subnet: 172.18.0.0/15
publishers -net:
driver: bridge
ipam:

3.1 Configuration of Docker environment

12

config:
- subnet: 172.20.0.0/15
subscribers -net:
driver: bridge
ipam:
config:
- subnet: 172.22.0.0/15
access-ejbca-net:
driver: bridge
ipam:
config:
- subnet: 172.24.0.0/15
backend-ejbca-net:
driver: bridge
ipam:
config:
- subnet: 172.26.0.0/15
volumes: #here we define global volumes used by multiple
services
ca-certs: #the volume containing Certification
Authority certificate file
driver: local
services:
ejbca-database:
hostname: ejbca-database
container_name: ejbca-database
image: "library/mariadb:latest"
networks:
- backend-ejbca-net
environment:
- MYSQL_ROOT_PASSWORD=foo0123
- MYSQL_DATABASE=ejbca
- MYSQL_USER=ejbca
- MYSQL_PASSWORD=ejbca
volumes:
- ./ejbca/datadbdir:/var/lib/mysql:rw
ejbca-nodel:
hostname: ejbca-nodel
container_name: ejbca
image: keyfactor/ejbca-ce:latest
depends_on:
- ejbca-database
networks:
- access-ejbca-net
- backend-ejbca-net
environment :
- DATABASE_JDBC_URL=jdbc:mariadb://ejbca-database

3.1 Configuration of Docker environment

13

:3306/ejbca?characterEncoding=UTF -8
- LOG_LEVEL_APP=INFO
- LOG_LEVEL_SERVER=INFO
- TLS_SETUP_ENABLED=simple
ports:
"80:8080"
- "443:8443"
sidebroker -service:
build:
context:
dockerfile: Dockerfile-sidebroker
container_name: sidebroker
hostname: sidebroker
tty: true
volumes:
- ./mosquitto/certs/:/mosquitto/certs/:rw
- ./mosquitto/keys/:/mosquitto/keys/:rw
networks:
- access-ejbca-net
broker -service:
build:
context:
dockerfile: Dockerfile-mosquitto
container_name: broker
depends_on:
sidebroker -service:
condition: service_completed_successfully
hostname: broker
tty: true
ports:
"8883:8883"
volumes:
- ./mosquitto/:/mosquitto/:rw
- ca-certs:/mosquitto/ca-certs/:rw
networks:
- broker -net
- subscribers -net
- publishers-net
- access-ejbca-net
publisher -service:
build:
context:
dockerfile: Dockerfile-publisher
container_name: publisher
hostname: publisher
tty: true
volumes:

109

110

113

114

115

116

118

119

3.2 Configuration of PKI EJBCA 14

- ./publisher/:/publisher/:rw
- ca-certs:/publisher/ca-certs/:rw
networks:
- publishers -net
- access-ejbca-net
subscriber -service:
build:
context:
dockerfile: Dockerfile-subscriber
container_name: subscriber
hostname: subscriber
tty: true
volumes:
- ./subscriber/:/subscriber:rw
- ca-certs:/subscriber/ca-certs/:rw
networks:
- subscribers-net
- access-ejbca-net

Listing 3.1: compose.yaml

To create the environment in Docker and run the applications specified in docker
compose file, it is only necessary to run the command docker compose up -d.

3.2 Configuration of PKI EJBCA

In order to access the platform using the web console, the following URL must be
copied into the search bar of the browser: http://localhost/ejbca/

EJBCAAdministration x| + - &0 @
Home Version : EJBCA 8.2.0.1 Community)
CA Functions to EJBCA

Node hostname ejbca-nodel

CA Structure & CRLs Server time 2023-12-11 19:41:17+00:00

Certificate Profiles.
Certification Authorities

Crypto Tokens. Publisher Queue Status
Publishers CAName |CA Service |CRL Status| | Publisher | Length

Validators
ManagementCA| « / No publishers defined.

RA Functions
Add End Entity
End Entity Profiles.
Search End Entities

VA Functions
oCsP Responders

Supervision Functions
Approval Profiles
Approve Actions

System Functions
Roles and Access Rules
Remote Authentication
Services

System Configuration
CMP Configuration
SCEP Configuration
System Configuration

My Preferences

RAWeb

©2002-2023. EJBCA® is a registered trademark.

Figure 3.1: EJBCA Web Homepage

3.2 Configuration of PKI EJBCA 15

In order to be able to issue digital certificates, it is necessary to create a user
in EJBCA that has permissions to generate new digital certificates. EJBCA offers
the possibility of creating users with restricted roles while respecting the principle
of least privilege. In this example, however, a user with an Administrator role was
created as indicated in the documentation. This user has been associated with a
certificate and a private key. The private key and certificate bundle are downloadable
in a .pl12 file that will be used later to make authenticated requests to the EJBCA
REST APL[1].

=9 b

(a) Generate certificate with WEB UI (b) Generate certificate with WEB UI

It is necessary to add the administrator user to the Super Administrator Role
via the WEB interface by going to System Functions > Role and Access Rules >
SuperAdministrator Role > Members:

(a) Add role to a user (b) Add role to a user

Now we can copy the .p12 file we just downloaded inside the publisher, subscriber,
and sidebroker folders.

In EJBCA we can generate our own Certification Authority hierarchy by config-
uring every last detail [5]. Since the purpose of this project is not to analyze this
product but to offer a starting point for integration between the various software
components used, ManagementCA for certificate generation will be used below. The
ManagementCA in EJBCA is essentially a high-level CA responsible for overseeing
and controlling the other CAs within the infrastructure, ensuring proper hierarchy,
security and governance of the PKI. A Certificate Profile is a set of rules and config-
urations that determine how a digital certificate will be structured and formed when
it is issued. The default certificate profiles will be used, respectively the SERVER
one for broker certificate generation and the ENDUSER one for client certificate
generation (as having the Extended Key Usage of type Client Authentication) [3].

3.2 Configuration of PKI EJBCA 16

11 esBcA

Manage Certificate Profiles
L

©2002-2023 EIBCAD i egsere e

Figure 3.4: Default certificate profiles

Finally, it is necessary to download the file ManagementCA.pem from EJBCA
WEB interface:

CA Certificates and CRLs

CRL Certificate

Figure 3.5: Download Certification Authority PEM file

and copy it to the root project folder named ca-certs.

Enabling the rest API

EJBCA Certificate Management REST API contains endpoints intended for integra-
tion with EJBCA, using CA Management, Crypto token management, Certificate
management and ConfigDump RESTful Web Services. This allows for easy integra-
tion and lightweight HTTP interaction for the most crucial parts of EJBCA. The
EJBCA Certificate Management REST API is disabled by default. To enable the
service, go to CA Ul — System Configuration — Protocol Configuration and select
Enable for the REST end point you want to use. The REST API requires access to
an active (non-external) CA [7].

N

~

4]

3.3 Integration between EJBCA and application containers

17

Protocol Resource Default URL Status | Actions

ACME fejbcalacme # Enabled | Disable |
Certstore lejbca/publicweblcertificates + Enabled | Disable |
cMP lejbcalpublicweb/cmp + Enabled | Disable |
CRLstore Jejbcal/publicweblcrls « Enabled | Disable |
EST 1. well-known/est # Enabled || Disable |
MSAE lejbca/msae # Enabled || Disable |
ocspP fejbcalpublicweblstatusfocsp # Enabled | Disable |
Public web fejbca # Enabled | Disable |
SCEP fejbcalpublicweblapply/scep + Enabled | Disable |
RA Web lejbcalra « Enabled | Disable |
REST CA Management lejbcalejbca-rest-apilvl/ca_management|%” Enabled [Disable |
REST Certificate Management | fejbca/ejbca-rest-apifvi/ca « Enabled | Disable |
lfejbcalejbca-rest-apifvl/certificate I

REST Crypto Token Management | fejbca/ejbca-rest-apilvl/cryptotoken & Enabled || Disable |
REST End Entity Management |/ejbca/ejbca-rest-api/vl/endentity + Enabled | Disable |
REST End Entity Management V2 | /ejbca/ejbca-rest-apifv2/endentity + Enabled | Disable |
REST Configdump i jbca-rest-apiivL ¥ Disabled || Enable |
REST Certificate Management V2 |fejbcalejbca-rest-apifv2/certificate " Enabled ‘m ‘
Wehdist lejbcalpublicweb/webdist « Enabled ‘Digame‘
Web Service lejbcalejbcaws # Enabled || Disable |
ITS Certificate Management fejocalits ¥ Disabled | Enable |

Figure 3.6: Enable REST API EJBCA

3.3 Integration between EJBCA and application con-
tainers

3.3.1 sidebroker

The Docker principle that emphasizes the concept of having each application per-
form only the minimum necessary and required for its execution is often referred to
as the "single responsibility principle" or "single responsibility principle." This prin-
ciple is promoted through the practice of "single responsibility containerization" or
"lightweight containers." This approach encourages the separation of functionality
into separate containers, each of which performs a single responsibility or task. This
promotes modularity, scalability and maintainability of the system as a whole. That
is why it was decided to create a sidebroker container that would perform the tasks
of generating a certificate-key pair for the broker. This was also made possible by
the API exposed by EJBCA for requesting new certificates. In particular, the script
req_crt.sh:

| EJBCA_P12_AUTH_FILE="SuperAdmin.pl2"

#!/bin/sh

CERT_FILE="broker.crt"
CSR_FILE="broker.csr"
Signing Request
PRIVATE_KEY="broker .key"

Define the path client certificate
Define the path client Certificate

Define the path client private key
Define the path to P12
authentication file EJBCA
EJBCA_PASSWORD_AUTH_FILE="foo123"
authentication file EJBCA
EJBCA_HOST="ejbca-nodel :8443"
EJBCA

Define the password of P12

Define the FQDN or IP address

48

49

50

3.3 Integration between EJBCA and application containers 18

EJBCA_TRUST_CHAIN="ManagementCA.pem" # Define the path trust
chain or single CA file EJBCA

EJBCA_USERNAME_END_ENTITY="superadmin" # Define the username
of the entity created EJBCA

EJBCA_CERTIFICATE_PROFILE_NAME="SERVER" # Define the
certificate profile name EJBCA

EJBCA_END_ENTITY_PROFILE_NAME="EMPTY" # Define the end entity
profile name EJBCA

;] EJBCA_CA_NAME="ManagementCA" # Define the CA name EJBCA

RETRY_CHECK_EJBCA=5 # Define the time to wait before retry the
EJBCA REST API availability

5| SERVICE_URL="http://ejbca-nodel:8080/ejbca/publicweb/

healthcheck/ejbcahealth" # Define the URL and port of the
EJBCA REST API service

Define a function that request a X.509 certificate
request_x509_certificate () {
echo "[-] Certificate file not found, publisher requesting
certificate..."
Create a CSR
openssl req -new -out $CSR_FILE -newkey rsa:2048 -nodes -
sha256 -keyout $PRIVATE_KEY -subj "/CN=broker"

Make the script runnable
chmod a+x pkcsl10Enroll.sh

Request the certificate
./pkcs10Enroll.sh \
-c "$CSR_FILE" \
-P "$EJBCA_P12_AUTH_FILE" \
-s "$EJBCA_PASSWORD_AUTH_FILE" \
-H "$EJBCA_HOST" \
-t "$EJBCA_TRUST_CHAIN" \
-u "$EJBCA_USERNAME_END_ENTITY" \
-p "$EJBCA_CERTIFICATE_PROFILE_NAME" \
-e "$EJBCA_END_ENTITY_PROFILE_NAME" \
-n "$EJBCA_CA_NAME"

Rename the certificate
mv "$EJBCA_USERNAME_END_ENTITY.crt" "$CERT_FILE"

Check the exit status of openssl
if [$7 -eq 0]; then
echo "Certificate requested done correctly!"
Copy the generated certificate and key inside the
broker container volume
cp $CERT_FILE /mosquitto/certs
cp $PRIVATE_KEY /mosquitto/keys
exit O

84

90

3.3 Integration between EJBCA and application containers 19

else
echo "Error during certificate request! Check logs"
tail -f /dev/null #in case of error do not terminate to
run
fi

until $(curl --output /dev/null --silent --head --fail
$SERVICE_URL); do
echo "Waiting for the service to be available...
sleep $RETRY_CHECK_EJBCA
done

echo "[+] EJBCA available"

Check if the certificate file exists

if [' -f "$CERT_FILE"]; then
request_x509_certificate
else

Get the expiration date of the certificate
expiration_date=$(openssl x509 -in "$CERT_FILE" -noout -
enddate | cut -d= -£f2)

Convert the expiration date to Unix timestamp
expiration_timestamp=%$(date -d "$expiration_date" +%s)

Get the current Unix timestamp
current_timestamp=$(date +%s)

Compare expiration date with current date
if ["$expiration_timestamp" -ge "$current_timestamp"];
then
echo "Certificate is valid. Expiration date:
$expiration_date"
exit O
else
echo "Certificate has expired. Expiration date:
$expiration_date"
request_xb509_certificate # Request a new certificate
fi
fi

Listing 3.2: req_crt.sh

is responsible for waiting for the PKI to be up and running and then checking
whether or not a digital certificate exists [6]. If not, it will be requested by calling

3.3 Integration between EJBCA and application containers

20

the pkcs10Enroll. sh script with the correct parameters:

#!/bin/bash

;] INPUT _HOSTNAME=""

INPUT_CERT_PROFILE=""
INPUT_END_ENTITY_PROFILE=""
INPUT_CA_NAME=""
INPUT_USERNAME=""
enrollment_code=""

help () {
echo "Usage: ‘basename $0°¢ options"
echo "-c : the csr file"
echo "-P the pl2 file to authenticate with"
echo "-s the pl2 file password"
echo "-t the Trust chain file for the TLS certificate"
echo "-H the EJBCA FQDN or IP Address"
echo "-u the username of the entity created in EJBCA"
echo "-p the certificate profile name"
echo "-e the end entity profile name'
echo "-n the CA name"
echo "

This script will
to submit CSR’s for a certificate

}

while getopts

"c:

use the EJBCA REST API PKCS10Enroll endpoint

P:H:s:t:u:p:e:n:xh" optname ; do

case $optname in

C

P

)

INPUT_CSR_FILE=$0PTARG ;;

)

INPUT_P12_CREDENTIAL=$0PTARG ;;

)

INPUT_P12_CREDENTIAL_PASSWD=$0PTARG ;;

)

INPUT_TRUST_CHAIN=$0PTARG ;;

)

INPUT_HOSTNAME=$0PTARG ;;

)

INPUT_USERNAME=$0PTARG ;;

)

INPUT_CERT_PROFILE=$0PTARG ;;

)

INPUT_END_ENTITY_PROFILE=$0PTARG ;;

)

INPUT_CA_NAME=$0PTARG ;;

)

set -x

)

L]

88

3.3 Integration between EJBCA and application containers 21

help ; exit 0 ;;
7))
echo "Unknown option $O0PTARG." ; help ; exit 1 ;;
)
echo "No argument value for option $0PTARG." ; help ;
exit 1 ;;
*)
echo "Unknown error while processing options." ;;
esac

7| done

if [' -f "$INPUT_CSR_FILE"]; then
echo "Please try again with a csr"
exit 1

fi

if [! -f "$INPUT_P12_CREDENTIAL"]; then
echo "Please specify a P12 file"
exit 1

71 £1

csr="$(cat ${INPUT_CSR_FILE})"

template=’{"certificate_request":$csr, "
certificate_profile_name":$cp, "end_entity_profile_name":
$eep, "certificate_authority_name":$ca, "username":$ee, "
password": $pwdl}’
json_payload=$(jq -n \
--arg csr "$csr" \
--arg cp "$INPUT_CERT_PROFILE" \
--arg eep "$INPUT_END_ENTITY_PROFILE" \
--arg ca "$INPUT_CA_NAME" \
--arg ee "$INPUT_USERNAME" \
--arg pwd "$enrollment_code" \
"$template")
echo $json_payload
if [-f "$INPUT_TRUST_CHAIN"]; then
curl -vv -k -X POST -s --cacert "$INPUT_TRUST_CHAIN" \
--cert-type P12 \
--cert "$INPUT_P12_CREDENTIAL:$INPUT_P12_CREDENTIAL_PASSWD
n \
-H ’Content -Type: application/json’ \
--data "$json_payload" \
"https://${INPUT_HOSTNAME}/ejbca/ejbca-rest-api/vl/
certificate/pkcsi10enroll" \
| jg -r .certificate | base64 -d > "${INPUT_USERNAME}-der.
crt"
else
curl -vv -k -X POST -s \
--cert-type P12 \
--cert "$INPUT_P12_CREDENTIAL:$INPUT_P12_CREDENTIAL_PASSWD
"\

93

94

N

N

3.3 Integration between EJBCA and application containers 22

-H ’Content-Type: application/json’ \
--data "$json_payload" \
"https://${INPUT_HOSTNAME}/ejbca/ejbca-rest-api/vl/
certificate/pkcsl10enroll" \
| jg -r .certificate | base64 -d > "${INPUT_USERNAME}-der.
crt"
fi

openssl x509 -inform DER -in "${INPUT_USERNAME}-der.crt"
outform PEM -out "${INPUT_USERNAME}.crt"

Listing 3.3: pkes10Enroll.sh

Finally, sidebroker container creation is handled through the Dockerfile-sidebroker
as shown below:

FROM ubuntu:latest

This is necessary because the mounting volumes comes
after the building image in compose.yaml
COPY ./sidebroker/ /sidebroker

WORKDIR /sidebroker

Download and install all necessary packages
RUN apt-get update && apt-get install -y jq openssl curl
iputils-ping curl

RUN chmod a+x req_crt.sh

RUN chown root:root /sidebroker/req_crt.sh

s|ENTRYPOINT ["/bin/bash", "/sidebroker/req_crt.sh"]

Listing 3.4: Dockerfile-sidebroker

3.3.2 publisher and subscriber

The client images used for the purpose of application testing were deployed from
the image base provided by Canonical [1]|. Here are the Dockerfiles of the publisher
and subscriber containers:

FROM ubuntu:latest

RUN apt-get update && apt-get install -y jq openssl curl
iputils-ping curl mosquitto-clients

3.3 Integration between EJBCA and application containers

23

s|COPY ./publisher/ /publisher/

COPY ./ca-certs/ /publisher/ca-certs/

Create a directory to store custom certificates
RUN mkdir -p /usr/local/share/ca-certificates

| # Copy the custom certificate to the container
IRUN cp /publisher/ca-certs/* /usr/local/share/ca-

certificates/

s RUN apt-get update && apt-get install -y ca-certificates

&& update-ca-certificates

/| WORKDIR /publisher

ol RUN chmod +x req_crt.sh

RUN chown root:root /publisher/req_crt.sh

ENTRYPOINT ["/bin/bash", "/publisher/req_crt.sh"]

Listing 3.5: Dockerfile-publisher

FROM ubuntu:latest

s/RUN apt-get update && apt-get install -y jq openssl curl

iputils-ping curl mosquitto-clients

5| COPY ./subscriber/ /subscriber/

COPY ./ca-certs/ /subscriber/ca-certs/

Create a directory to store custom certificates
RUN mkdir -p /usr/local/share/ca-certificates

Copy the custom certificate to the container
RUN cp /subscriber/ca-certs/* /usr/local/share/ca-
certificates/

s RUN apt-get update && apt-get install -y ca-certificates

&& update-ca-certificates

WORKDIR /subscriber

V]

3.3 Integration between EJBCA and application containers 24

RUN chmod +x req_crt.sh
RUN chown root:root /subscriber/req_crt.sh

ENTRYPOINT ["/bin/bash", "/subscriber/req_crt.sh"]

Listing 3.6: Dockerfile-subscriber

The creation of certificates for containers simulating MQTT clients (publishers
and subscribers) is done using the same scripts seen earlier for the sidebroker making
the necessary changes regarding the parameters and paths of the corresponding
volumes. Two bash scripts, subscribe.sh and publish.sh, were also developed
in order to speed up the distribution of MQTTS messages between publishers and
subscribers:

#!/bin/bash

Configuration
BROKER_ADDRESS="broker"
BROKER_PORT="8883"
CA_CERT="ca-certs/ManagementCA.pem"
CLIENT_CERT="publisher.crt"

CLIENT _KEY="publisher.key"
TOPIC="LAB"

Infinite loop for publishing messages with timestamp every
10 seconds

while true; do
TIMESTAMP=$(date +%s) # Get current Unix timestamp
MESSAGE="There is a new message! $(date)" # Append
formatted timestamp to your_message

mosquitto_pub -h "$BROKER_ADDRESS" -p "$BROKER_PORT" --
cafile "$CA_CERT" --cert "$CLIENT_CERT" --key "$CLIENT_KEY"
-t "$TOPIC" -m "$MESSAGE" -d --insecure
sleep 10 # Wait for 10 seconds before publishing again
done

Listing 3.7: publish.sh

Configuration
BROKER_ADDRESS="broker"
BROKER_PORT="8883"
CA_CERT="ca-certs/ManagementCA.pem"

5| CLIENT_CERT="subscriber.crt"

CLIENT_KEY="subscriber.key"
TOPIC="LAB"

10

11

3.4 Configuration of Mosquitto broker 25

Infinite loop for subscribing and receiving messages every

10 seconds
while true; do

mosquitto_sub -h "$BROKER_ADDRESS" -p "$BROKER_PORT" --

cafile "$CA_CERT" --cert "$CLIENT_CERT" --key "$CLIENT_KEY"

-t "$TOPIC" -d

sleep 10 # Wait for 10 seconds before subscribing again

done

Listing 3.8: subscribe.sh

3.4 Configuration of Mosquitto broker

Mosquitto broker is deployed from the Eclipse Foundation base image [9]. A copy
of ManagementCA’s certificate is added in order to trust any certificate issued by
ManagementCA and presented by clients during authentication:

FROM eclipse-mosquitto:latest

COPY ./mosquitto/ /mosquitto/

5s|COPY ./ca-certs/ /mosquitto/ca-certs/

#to trust the self-signed certificate CA
RUN cp /mosquitto/ca-certs/* /usr/local/share/ca-
certificates/

#update the trust store certificates
RUN update-ca-certificates

Listing 3.9: Dockerfile-mosquitto

Mosquitto broker at startup loads the certificate to be exposed in MQTTS commu-
nications, the private key and the certificate of the trusted CA for client authentica-
tion from the paths specified in the configuration file. The require_certificate
true setting in the Mosquitto configuration file requires clients to present a valid
certificate to authenticate to the MQTT server. Below is the mosquitto.conf con-
figuration file:

listener 8883 0.0.0.0
protocol mqtt

slcertfile /mosquitto/certs/broker.crt

~

0

3.4 Configuration of Mosquitto broker

26

keyfile /mosquitto/keys/broker.key

sitls_version tlsv1l.3

require_certificate true

cafile /mosquitto/ca-certs/ManagementCA.pem
log_type all

allow_anonymous true

Listing 3.10: mosquitto.conf

27

Chapter 4

Proof of Concept

In this final chapter, significant moments and key procedures will be shown through
detailed screenshots. The screenshots presented here serve as a visual guide to under-
standing the operation, interactions, and crucial communication steps between the
various components of the implemented infrastructure. Via the command docker
compose logs -f launched within the secureiot parent folder, it is possible to ana-
lyze the logs of the entire deployment process performed with the compose docker.
In particular we note that both the sidebroker container and the MQTT clients
check for the existence and validity of a previously issued digital certificate that is
already present within the file system; if not, they request it via the scripts seen
earlier. Here is an example for the sidebroker container:

5,984+0000 INFO [/upt/kevfo:tor/bw/,tarc

5,984+0000 INFO [/opt/keyfactor/bin

5,984+0000 INFO [/opt/Leyfacmr/bm/szan

5,984+0000 INFO [/upt/l'eyfa:tnr/bin/start.
c /s

#
Try out the commercially supported EJBCA Enterprise Cloud on AWS or Azure, fully featured with:
- Additional enrollment APIs such as a complete REST API, EST, ACME and more.
- Support for external Registration Authority and responders
- Hardware Security Module support
. # - Application upda
[/opt/kevfa(tor/b\n/start # ..and more!
[/opt/keyfactor/bt #
[/opt/keyfactor/bin # Feel free to con directly for a cloud, on-prem, Saas, embedded or hybrid solution that fits
[/opt/keyfactor/bin # your specific ne
5,984+0000 INFO [/opt/keyfactor/bin/start 3
5,984+0000 INFO [/opt/keyfactor/bin/start #
5,984+0000 INFO [/opt/keyfactor/bin/start #
5,984+0000 INFO [/opt/keyfactor/bin/start #*
5,984+0000 INFO [/opt/keyfactor/bin/start ®
5,984+0000 INFO ®
5,984+0000 INFO
440000 INFO [/opt/keyfactor/bin/start R B B R B R AR AR
88+0000 INFO [/opt/keyfactor/bin/start ss:1) Waiting 5 seconds before signaling application readiness to ensure proper handling of PublicAccessAuthentica

://aws.amazon. con/marketplace/seller -profile?id=7edf9048- 58e6-4686-9d98-bgeoc1d78fce #
https://azurenarketplace.microsoft.com/en-us/marketplace/apps/prinekey.ejbca_enterprise_cloud_2 #
#
https: //waw.keyfactor .com #

sales@keyfactor.com #
#

Waiting for the service to be available...
Waiting for the service to be available...

[+] EJBCA available
[-] Certificate file not found, publisher requesting certificate...

e B ST SO TPo
CHHE

s r e . e
ebete

Y

I : - /yMI1BI jANBgkahkiGOWOBAQEF\nAAOCAQBAMI TBCGKCAQEAPbaCCFT6u6HKgQ3NLX1Lg3VL
2rg(,ﬂJNq\nthquOIE:]4[)Uv1HldMEtuq/f[wf74HVvv]PSA?)ZHTQDLG(‘IWr\kORrvOm\nlm 3 v 6hntYoDtGS+n\nJLGLNruQUrh2SBoAKYKx7Vg55L25+njFCkNSGVCLW3GBFOLOTED
IHE\nX1010DLyu461qTANFGSqTZF LRaUCTHHS07 1wOTO39dyTa1Ui 35 Ju9GNCGgYe37\nr 9P TxzmxMe DQYIKoZIhvcN\nAQELBQADGGEBAKSCKTHuY EQSZWCNGCPQLOSDS6TOM12adA UWUK\n
G i \nk032zd {VNbe! 548> 9IpOKB71cOBWVI\NBKF1S
, i ity_profile_name"

Figure 4.1: sidebroker requesting a certificate to EJBCA

28

TLS header, Supplenental data

MITYUOH2,24°8.5:6 L), TLS handshake, Certificate (11):
Connected to ejbca-nodel (172.24.0.5) port 84

ALPN, offering h2

ALPN, offering http/1.1

TLsvie (oum), TU tificate s

[5 byt

L

TLS header, Supplemental data

2 TLS handshake, CERT verify (15):
(UT), TLS har
12 bytes da

ta]
(1), LS hesder, Certificate Status (22): A Prrerort, (N)

data
), TLS header, Supplemental data (23

g TLSV1.3 / TLS_AES_256_GCH_S
2 (IN), TLS header, Finished (26): PN, server did not agree to a protoco
[5 bytes data] e:)
TLS header, Supplemental data (ect: UID=c-8gxxx1cvy984rbvd e1; 0=EJBCA Container Quic
2023 GHT
TLS handshake, Encrypted E
32 bytes data G JBCA Container Quickstart
TLSV1.3 (IN), TLS handshake, est CERT (e e verify r i s igned ate in certificate chain (1
190 by at e
TLsvi.3 (IN),
[2347 by

, continuing anyway.

Sv
TLS handshake, Certific) s b]
s roll HTTP/1.1
TUSV1.3 (IN), TLS handshake, CERT -
[264 bytes data

(1), Ts handshake, Finished (20)
[52 bytes data Content-Type: application/json
TLSV1.2 (OUT), TLS header, Finished (2 Content-Length: 1
5 bytes data
TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):
header, Supplenental data (:
, Supplenental data (23)]
TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):
, LS handshake, Certificate (11): { [0 dat:
% 2 (IN), TLS header, Supplenental data
), LS header, Supplenental data (@) I ity STl T €5
a fle as not supporting multiuse
CERT verify (15): LR 3 T S 6N
pplenental data (2

, Finished

tart date: o
xpire date: 0
is Il tan: CA; O=E: [1473 by lata]
SL certificate Tt: self-signed certificate in certif . continuing anyway Connecton #6 to host ejbca-nodet. left

TLSv1.2 (OUT), TLS header, Supplenental data Certificate requested done correctly!

(a) CURL command output (b) CURL command output

After this phase of certificate request and generation, the Mosquitto broker,
thanks to the specification in the compose.yaml of the depends_on, waits for the
service sidebroker to be successfully completed so that it can be started with the
certificates and keys needed for encrypted and authenticated communications:

SertialNo=FBCA431EB9507862037531B59B66B730210CD84, accountBindingld

2023-12-14 16:22:38,348+:0000 INFO [org.cesecore.audit.inpl.logd].Log4jDevice] (default task-2) 2023-12-14 16:22:38+00:00;CERT_CREATION; 3 CERTIFICATE; CORE;CN
; FBCA431EB9507862037531B59B668730210CD84; superadmin;subjectdn=CN=broker ;certprofil ssuancerevocationreason=-1;cert=MIIDyzCCAjOgAWIBAGIUD7 ykMeuVB4YgN1MbWbZ rewIQzYQWDQYIKOZIhveNAQ)
UBUXGDAWBGNVBAOMDO LVVEXhYNOyYXRVCM 11CZ EOMAWGAUEAWWF SWOUQOEWHNCNM jHXMJ EOMTYXMIMAWhCNM JUXHMIEZMTYXMJM3W JARMQBWDQYDVQQDDAZ L cmor ZX Iwg gELMABGC SqGS Ib3DQEBAQU

1Ivg7foKkdicxyWrg3zG+7M6qK1Mh92hP]k28T0ZDy 3XUVKZ3c8eypalOeH+01FBDZHtpOhBZMz /hEQx4nBdhUnd 131cKQdiZR2X SKSGgDerVzZChQ3/LG235ZZWZg +umXQIWT9Or MsX8 / FPZEW

i 6QIHkA i E+TPdap9sz3VY IUDL FFpm276AVHFkoY]jCWSZ+bi9qRKdex,/rc /BAGMBAAG JATBZMAWGALUJEWEB /WQCMAAWHWYDVRO JBBOWFOAU /k12 Jpi8BLS jWmx8+4B7NIXAXNA
QUHAWEWHQYDVROOBBYEFANGT3Z9Uh+JK14e7LMFQRNGSARBMA4GA1UIDWE /WQEAWLF oDANBgkqhkiG9WOBAQSFAAOCAYEAQCYRKWAVOOMbWORS ZFIAK3CXy8SIG WXdS t FTBBZgz 93anF+/EGUHDSVWZX0UUYZQnodNpipq1/DpONTs3FYmn|
bGXp10tdARhNGSIFYDVIThrtGF1AFbGRMMWAD 1yFLr+r8YYa5118FzCawB+aEnrOftUi0e7ZIeabxVBUHNONWCXCBE3Z2+bDtsDQUTN Y /r 2LLWARtFN3dBWS6M/ FeBGPKES Zuu/UXEHM /8C3T74KbYxeazCGMGLWGRI3GUGNYhQORN/IVKQ)
LMYVoGFptVNABRrVhG278D0TpIELWLP3Z87eT6NNSA7CCTnIeh Is JPgboL T JP8Tau/oVb+00DIaNz76+mycHel fefj1gr fzQ9BM4WUD03DTCOYS/PKXOCELWHNk FpabLXPHFSVVk2FHSNIFtUDBhUXBNQIqWR7NS NARZUBLKKTIF34XLFFN

2023-12-14 16:22:38,350+0000 INFO [org.cesecore.audit.impl.loga].Log4jDevice] (default task-2) 2023-12-14 16:22:38+00:00;RA_EDITENDENTITY; SS:RA;CORE;Local ad|
yManagementSession.decRequestCounter; -985727687; ;superadmin;msg=Edited end entity superadmin, new status 4e.

2023-12-14 16:22:38,364+0000 INFO [org.ejbca.core.ejb.ApplicationManagedTransactionsBean] (default task-2) Skipped update of 'superadmin' due to concurrent transa)

2023-12-14 16:22:38,365+0000 INFO [org.ejbca.core.ejb.ra.EndEntityManagementsessionBean] (default task-2) Changed status for user 'superadnin' to STATUS_GENERATED)
TLSV1.2 (IN), TLS header, Supplemental data (23):
[5 bytes data]
Mark bundle as not supporting multiuse
HTTP/1.1 201 Created

*

.

X-Franm
Content-Security-Policy: default-src https:
Date: Thu, 14 Dec 2023 16:22:38 GMT
Connection: keep-alive
X-Content-Type-Options: nosniff

rict-Transport-Security: max-age=31536600
Content-Type: application/json
Content-Length: 1400

AAAA

An

[1400 bytes data]
Connection #0 to hUSt ejbca-nodel left intact
Certificate ested done correctly!

e A

1702570959: mosquitto version 2.0.18 starting
1702570959: Config loaded from /mosquitto/config/mosquitto.conf.
1702570959: Opening ipv4 listen socket on port 8883.

1702570959: mosquitto version 2.0.18 running

Figure 4.3: Mosquitto wait sidebroker to complete succesfully

We enter inside the application containers via the commands docker exec -it
subscriber /bin/bash and docker exec -it publisher /bin/bash and run the
scripts to send/receive the MQTT messages seen earlier. By launching the two
scripts seen above, subscribe.sh and publish.sh respectively, we notice that con-
nections with the broker are established without any error and messages are delivered
correctly:

29

d H Trom auto-BOEBD2B6-OFB5-BODE-0 D6B2806 (a8, q
176257202 nding PUBLISH to auto-571CFO9E-DDC2-36FC-E595-8EOF2CFSD2CF (do, qo,
1702572029: Received DISCONNECT from auto-8OEBD286-9FBS5-BDDE-0322-B62B5D6B28D6
1702572029: Client auto-80EBD286- 9FBS-BDDE-0322-B62B5D6B28D6 disconnected.
1702572039: New connection from 172.24.0.3:40470 on port 8883.
: New client connected from 172.24.0.3:48470 as auto-FFAF7ABS-0D61-DAFD-663A-076901604820 (p2, c1, K6@).
No will message specified.
nding CONNACK to auto-FFAF7AB5-0D61-D4FD-663A-076901604820 (0, ©)
Received PUBLISH from auto-FFAF7ABS-6D61-DAFD-663A-076901604820 (do, qo, re, me, 'LAB', ... (52 bytes))
nding PUBLISH to auto-571CFO9E-DDC2-36FC-E595-8EOF2CFSD2CF (do, q0, ro, mo, 'LAB', ... (52 bytes))
Received DISCONNECT from auto-FFAF7ABS-0D61-D4FD-G663A-076901604820
Client auto-FFAF7ABS-0D61-D4FD-663A-076901604820 disconnected.
New connection from 172.24.0.3:47762 on port 8883.
New client conmected from 172.24.6.3:47762 as auto-F8E27E62-EDF6-81AB-A4E9-BEBFOA35202C (p2, c1, k6O).
1702572049: No will message specified.
170257204 nding CONNACK to auto-F8E27E62-EDFG-81AB-A4E9-BEBFIA35202C (0, ©)
1702572049: Received PUBLISH from auto-F8E27EG2-EDF6-81AB-A4E9-BEBFIA35202C (d0, q0, re, me, 'LAB', ... (52 bytes))
1702572049: Sending PUBLISH to auto-571CF@9E-DDC2-36FC-E595-8EOF2CF5D2CF (d0, qo, re, mo, 'LAB', ... (52 bytes))
1702572049: Received DISCONNECT from auto-FBE27EG2-EDF6-81AB-A4E9-BEBFIA35202C
1702572049: Client auto-FBE27E62-EDFG-81AB-A4ES-BEBFIA35202C disconnected.

T, 10, ™, G Bytes
re, mo, 'LAB', ... (52 bytes))

m root@subscriber: /subscriber) x R root@publisher: /publisher

root@subscriber:/subscriber# ./subscribe.sh root@publisher:/publisher# ./publish.sh

Client (null) sending CONNECT Client (null) sending CONNECT

Client (null) received CONNACK (0) Client (null) received CONNACK (0)

Client (null) sending CRIBE (Mid: 1, Topic: LAB, QoS: @, Options: ©x00) Client (null) sending PUBLISH (de, q@, re, mi, ++v (52 bytes))
Client (null) received SUBACK Client (null) sending DISCONNECT

subscribed (mid: ® Client (null) sending CONNECT

Client (null) received PUBLISH (do, q@, ro, me, 'L ... (52 bytes)) Client (null) recelved CONNACK (0)

There is a new message! Thu Dec 14 16:40:29 UTC Client (null) sending PUBL. (de, q0, re, m1, ' ... (52 bytes))
Client (null) received PUBLISH (do, qo, ro, mo, B', ... (52 bytes)) Client (null) sending DISCONNECT

There is a new message! Thu Dec 14 16:40:39 UTC (l}fnt (nully S§nd}ng (DHHEQ,

Client (null) received PUBLISH (do, q@, ro, me, 'L ... (52 bytes)) Client (null) received CONNACK (6)

There is a new message! Thu Dec 14 16:40:49 UTC Client (null) sending PUBLISH (de, q@, re, mi, » .. (52 bytes))
0 Client (null) sending DISCONNECT

Figure 4.4: MQTTS Message Exchange

in red we have the messages sent by the publisher, in blue those received by the
subscriber, and in the logs of correct dispatching of messages by the broker.

30

Conclusion

The following project allowed the development of an advanced and comprehensive
laboratory focused on the integration of several open-source components. This lab
was designed to simulate a real IoT environment, with particular attention to the
management of digital certificates and in reference especially to the use of MQTT
and TLS protocols in order to ensure high security in the IoT environment, a mode
now pervasive in our daily reality. I would like to thank Prof. Michele Pagano and
Prof. Rosario Giuseppe Garroppo for their guidance and constant support during
the implementation of this project. They played a key role in guiding the project,
providing valuable advice, stimuli and insights that greatly enriched the learning
journey and the realization of the lab.

BIBLIOGRAPHY 31

Bibliography

[1] Canonical. Ubuntu Image on Docker Hub. https://hub.docker.com/_/ubuntu,
2023. [Online; accessed 11-December-2023].

[2] Docker Documentation. Install Docker Compose. https://docs.docker.com/
compose/install/, 2023. |Online; accessed 11-December-2023].

[3] Docker Documentation. Install Docker Engine. https://docs.docker.com/
engine/install/, 2023. [Online; accessed 11-December-2023].

[4] EJBCA PKI Documentation. Create Administrator Ac-
count. https://doc.primekey.com/ejbca/tutorials-and-guides/
tutorial-start-out-with-ejbca-docker-container#
TutorialStartoutwithEJBCADockercontainer-CreateAdministratorAccount,

2023. [Online; accessed 11-December-2023].

[5] EJBCA PKI Documentation. EJBCA Create a Root CA.
https://doc.primekey.com/ejbca/tutorials-and-guides/
tutorial-create-your-first-root-ca-using-ejbca, 2023. [Online; ac-
cessed 11-December-2023].

[6] EJBCA PKI Documentation. EJBCA Healtcheck. https://doc.
primekey.com/ejbca/ejbca-operations/ejbca-operations-guide/
ca-operations-guide/ejbca-maintenance/monitoring-and-healthcheck,
2023. |Online; accessed 11-December-2023].

[7] EJBCA PKI Documentation. EJBCA REST Interface. https:
//doc.primekey.com/ejbca/ejbca-operations/ejbca-ca-concept-guide/
protocols/ejbca-rest-interface#:”:text=The%20EJBCAY,20Certificate
20Management%20REST, (non%2Dexternal)20CA., 2023. |Online; accessed
11-December-2023|.

[8] EJBCA PKI Documentation. Start out with EJBCA Docker con-
tainer. https://doc.primekey.com/ejbca/tutorials-and-guides/
tutorial-start-out-with-ejbca-docker-container, 2023. [Online; ac-
cessed 11-December-2023].

BIBLIOGRAPHY 32

[9] Eclipse Foundation. Mosquitto Image on Docker Hub. https://hub.docker.
com/_/eclipse-mosquitto, 2023. |Online; accessed 11-December-2023].

