
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Master Primo Livello in Cybersecurity

DEMIoT:
a secure microservices IoT environment

Relatore:

Prof: Pagano Michele

Candidato:

Samuele Padula

ANNO ACCADEMICO 2023/2024

CONTENTS 3

Contents

1 Project Goals 5

2 Components and architecture 7
2.1 Components . 7

2.1.1 Docker . 7
2.1.2 Mosquitto . 7
2.1.3 PKI EJBCA . 7

2.2 Architecture . 8

3 Deployment: structure and interactions 11
3.1 Configuration of Docker environment 11
3.2 Configuration of PKI EJBCA . 14
3.3 Integration between EJBCA and application containers 17

3.3.1 sidebroker . 17
3.3.2 publisher and subscriber . 22

3.4 Configuration of Mosquitto broker . 25

4 Proof of Concept 27

5

Chapter 1

Project Goals

This report will outline the fundamental goals and implementation strategies of a
project that focuses on the creation of a lab in the Docker environment. This lab is
aimed at implementing the Mosquitto MQTT broker and managing client authen-
tication using digital certificates. A key element of this process is the integration of
an Open Source Public Key Infrastructure (PKI), specifically the use of EJBCA to
issue the necessary certificates. The primary objective of this initiative is to provide
a reliable and secure laboratory environment for the development, testing and prac-
tical demonstration of the integration of Mosquitto MQTT as a messaging broker,
combined with a rigorous client authentication process based on digital certificates.
This implementation provides an in-depth exploration of MQTT’s capabilities in
an advanced security context, as well as offering a replicable model for real-world
operational environments. Throughout this report, key steps for configuring the
Docker environment, installing and configuring the Mosquitto MQTT broker, and
implementing client authentication using digital certificates issued by the EJBCA
Open Source PKI system will be detailed. In addition, the benefits and security
implications of this architecture will be examined, along with recommended best
practices for managing and maintaining a secure and functional MQTT environ-
ment. Through this report, we aim to provide comprehensive and detailed guid-
ance on the deployment process, highlighting the inherent benefits of a Mosquitto
MQTT-based secure IoT messaging solution and emphasizing the crucial importance
of authentication via digital certificates issued by a trusted PKI such as EJBCA.

7

Chapter 2

Components and architecture

2.1 Components

2.1.1 Docker

The adoption of Docker as a virtualization environment has proven crucial for cre-
ating an isolated and highly replicable environment for the IoT lab. Its ability to
efficiently containerize applications and their dependencies, as well as its ease of
deployment and management, makes Docker the ideal choice for creating a con-
sistent and easily replicable environment. In addition, Docker simplifies resource
management and offers a high degree of flexibility in deploying, testing and deploy-
ing the entire stack of applications and services required for the IoT lab. Finally,
the handling of name resolution already provided by the Docker environment and
the isolation of different networks was one of the key reasons for its selection.

2.1.2 Mosquitto

Selection of Mosquitto by Eclipse Foundation as an MQTT broker is based on its
proven reliability in handling the MQTT protocol, which is widely used for commu-
nication between IoT devices. Its light weight and scalability make it an optimal
choice for handling large volumes of messages with a low impact on system re-
sources. In addition, its wide adoption in the IoT community provides a mature
support ecosystem and continuous development of new features and enhancements.

2.1.3 PKI EJBCA

The adoption of the EJBCA PKI by PrimeKey has proven to be critical for the
reliable management of digital certificates required for client and MQTT broker
authentication. The robustness and wide range of features offered by EJBCA enable
the secure generation, management and revocation of certificates, ensuring a high
level of security in the IoT environment. EJBCA’s flexibility and adaptability align
perfectly with the needs of an infrastructure that requires dynamic deployment and

2.2 Architecture 8

secure management of digital certificates for device authentication. In addition,
the ability to interact with its REST API interface enabled integration with other
architectural components.

2.2 Architecture

The PKI plays a central role within the developed architecture as it allows all other
application components to communicate in an authenticated and encrypted manner.
In fact, the PKI exposes two ports, 8080/tcp and 8443/tcp, HTTP and HTTPS, re-
spectively, for simplified management of users and certificates via the Web interface
and for communication with the REST API interface. The MariaDB database has
been brought back into the architecture as part of the solution deployment, but it
is a "hidden" component in the eyes of us end users. The various MQTT clients
as well as the Mosquitto broker interact with the EJBCA API via HTTP protocol
to request the generation of a digital certificate in X.509 format. All application
communications, on the other hand, between the MQTT clients and the Mosquitto
broker take place using MQTT over TLS. The broker exposes only port 8883/tcp
through which clients communicate with the server. Finally, to conduct connection
tests with the broker, a custom Ubuntu-based image with some of the tools needed
to communicate with the broker was chosen as the MQTT clients. User-defined
Bridge networks in Docker were chosen. These are custom networks created by the
user to connect Docker containers. These networks provide isolation and efficient
communication between containers in the same Docker environment. They work
by allowing containers in the same network to communicate with each other using
container names as hostnames and allowing developers to define custom network
configurations, such as IP address and subnet, for containers within the network.
User-defined bridge networks provide a controlled and isolated environment for com-
munication between containers, enabling better management of network resources
and providing greater security and flexibility in the Docker environment. In or-
der for two containers to be able to communicate, they must belong to the same
bridge network. In particular, it was decided to allow only client communication
to the PKI via the network access-ejbca-net and the broker broker-net and
broker communication with the PKI and clients via the networks publisher-net
and subscriber-net. Any communication between MQTT clients turns out to be
segregated at the network level.

2.2 Architecture 9

Figure 2.1: Docker architecture

11

Chapter 3

Deployment: structure and
interactions

In this chapter we will address the various steps in order to properly install all the
components of the presented solution. All the necessary code and configuration files
can be found on the following GitHub repository https://github.com/padowla/
DEMIoT.

3.1 Configuration of Docker environment

For the implementation of the project, Docker was chosen to be installed, specifically
the installation was done on an Ubuntu 22.04.3 LTS machine, but by its nature, this
lab is replicable on different platforms as well. In addition, an additional level of vir-
tualization could be added by running Docker within a virtual machine running in a
Type 1 or Type 2 Hypervisor. [3]. In addition, it was necessary to install the Docker
Compose tool in order to more easily manage a multi-container environment. Com-
pose is a tool for defining and running multi-container Docker applications. With
Compose, you use a YAML file to configure your application’s services. Then, with
a single command, you create and start all the services from your configuration.[2]
The docker compose YAML file used is as follows:

1 version: "3.9"
2 networks:
3 broker -net:
4 driver: bridge
5 ipam:
6 config:
7 - subnet: 172.18.0.0/15
8 publishers -net:
9 driver: bridge

10 ipam:

3.1 Configuration of Docker environment 12

11 config:
12 - subnet: 172.20.0.0/15
13 subscribers -net:
14 driver: bridge
15 ipam:
16 config:
17 - subnet: 172.22.0.0/15
18 access -ejbca -net:
19 driver: bridge
20 ipam:
21 config:
22 - subnet: 172.24.0.0/15
23 backend -ejbca -net:
24 driver: bridge
25 ipam:
26 config:
27 - subnet: 172.26.0.0/15
28 volumes: #here we define global volumes used by multiple

services
29 ca -certs: #the volume containing Certification

Authority certificate file
30 driver: local
31 services:
32 ejbca -database:
33 hostname: ejbca -database
34 container_name: ejbca -database
35 image: "library/mariadb:latest"
36 networks:
37 - backend -ejbca -net
38 environment:
39 - MYSQL_ROOT_PASSWORD=foo123
40 - MYSQL_DATABASE=ejbca
41 - MYSQL_USER=ejbca
42 - MYSQL_PASSWORD=ejbca
43 volumes:
44 - ./ejbca/datadbdir :/var/lib/mysql:rw
45 ejbca -node1:
46 hostname: ejbca -node1
47 container_name: ejbca
48 image: keyfactor/ejbca -ce:latest
49 depends_on:
50 - ejbca -database
51 networks:
52 - access -ejbca -net
53 - backend -ejbca -net
54 environment:
55 - DATABASE_JDBC_URL=jdbc:mariadb ://ejbca -database

3.1 Configuration of Docker environment 13

:3306/ ejbca?characterEncoding=UTF -8
56 - LOG_LEVEL_APP=INFO
57 - LOG_LEVEL_SERVER=INFO
58 - TLS_SETUP_ENABLED=simple
59 ports:
60 - "80:8080"
61 - "443:8443"
62 sidebroker -service:
63 build:
64 context: .
65 dockerfile: Dockerfile -sidebroker
66 container_name: sidebroker
67 hostname: sidebroker
68 tty: true
69 volumes:
70 - ./ mosquitto/certs /:/ mosquitto/certs/:rw
71 - ./ mosquitto/keys /:/ mosquitto/keys/:rw
72 networks:
73 - access -ejbca -net
74 broker -service:
75 build:
76 context: .
77 dockerfile: Dockerfile -mosquitto
78 container_name: broker
79 depends_on:
80 sidebroker -service:
81 condition: service_completed_successfully
82 hostname: broker
83 tty: true
84 ports:
85 - "8883:8883"
86 volumes:
87 - ./ mosquitto /:/ mosquitto /:rw
88 - ca -certs:/ mosquitto/ca -certs /:rw
89 networks:
90 - broker -net
91 - subscribers -net
92 - publishers -net
93 - access -ejbca -net
94 publisher -service:
95 build:
96 context: .
97 dockerfile: Dockerfile -publisher
98 container_name: publisher
99 hostname: publisher

100 tty: true
101 volumes:

3.2 Configuration of PKI EJBCA 14

102 - ./ publisher /:/ publisher /:rw
103 - ca -certs:/ publisher/ca -certs /:rw
104 networks:
105 - publishers -net
106 - access -ejbca -net
107 subscriber -service:
108 build:
109 context: .
110 dockerfile: Dockerfile -subscriber
111 container_name: subscriber
112 hostname: subscriber
113 tty: true
114 volumes:
115 - ./ subscriber /:/ subscriber:rw
116 - ca -certs:/ subscriber/ca -certs/:rw
117 networks:
118 - subscribers -net
119 - access -ejbca -net

Listing 3.1: compose.yaml

To create the environment in Docker and run the applications specified in docker
compose file, it is only necessary to run the command docker compose up -d.

3.2 Configuration of PKI EJBCA

In order to access the platform using the web console, the following URL must be
copied into the search bar of the browser: http://localhost/ejbca/.

Figure 3.1: EJBCA Web Homepage

3.2 Configuration of PKI EJBCA 15

In order to be able to issue digital certificates, it is necessary to create a user
in EJBCA that has permissions to generate new digital certificates. EJBCA offers
the possibility of creating users with restricted roles while respecting the principle
of least privilege. In this example, however, a user with an Administrator role was
created as indicated in the documentation. This user has been associated with a
certificate and a private key. The private key and certificate bundle are downloadable
in a .p12 file that will be used later to make authenticated requests to the EJBCA
REST API.[4].

(a) Generate certificate with WEB UI (b) Generate certificate with WEB UI

It is necessary to add the administrator user to the Super Administrator Role
via the WEB interface by going to System Functions > Role and Access Rules >
SuperAdministrator Role > Members:

(a) Add role to a user (b) Add role to a user

Now we can copy the .p12 file we just downloaded inside the publisher, subscriber,
and sidebroker folders.

In EJBCA we can generate our own Certification Authority hierarchy by config-
uring every last detail [5]. Since the purpose of this project is not to analyze this
product but to offer a starting point for integration between the various software
components used, ManagementCA for certificate generation will be used below. The
ManagementCA in EJBCA is essentially a high-level CA responsible for overseeing
and controlling the other CAs within the infrastructure, ensuring proper hierarchy,
security and governance of the PKI. A Certificate Profile is a set of rules and config-
urations that determine how a digital certificate will be structured and formed when
it is issued. The default certificate profiles will be used, respectively the SERVER
one for broker certificate generation and the ENDUSER one for client certificate
generation (as having the Extended Key Usage of type Client Authentication) [8].

3.2 Configuration of PKI EJBCA 16

Figure 3.4: Default certificate profiles

Finally, it is necessary to download the file ManagementCA.pem from EJBCA
WEB interface:

Figure 3.5: Download Certification Authority PEM file

and copy it to the root project folder named ca-certs.

Enabling the rest API

EJBCA Certificate Management REST API contains endpoints intended for integra-
tion with EJBCA, using CA Management, Crypto token management, Certificate
management and ConfigDump RESTful Web Services. This allows for easy integra-
tion and lightweight HTTP interaction for the most crucial parts of EJBCA. The
EJBCA Certificate Management REST API is disabled by default. To enable the
service, go to CA UI → System Configuration → Protocol Configuration and select
Enable for the REST end point you want to use. The REST API requires access to
an active (non-external) CA [7].

3.3 Integration between EJBCA and application containers 17

Figure 3.6: Enable REST API EJBCA

3.3 Integration between EJBCA and application con-
tainers

3.3.1 sidebroker

The Docker principle that emphasizes the concept of having each application per-
form only the minimum necessary and required for its execution is often referred to
as the "single responsibility principle" or "single responsibility principle." This prin-
ciple is promoted through the practice of "single responsibility containerization" or
"lightweight containers." This approach encourages the separation of functionality
into separate containers, each of which performs a single responsibility or task. This
promotes modularity, scalability and maintainability of the system as a whole. That
is why it was decided to create a sidebroker container that would perform the tasks
of generating a certificate-key pair for the broker. This was also made possible by
the API exposed by EJBCA for requesting new certificates. In particular, the script
req_crt.sh:

1 #!/bin/sh
2

3 CERT_FILE="broker.crt" # Define the path client certificate
4 CSR_FILE="broker.csr" # Define the path client Certificate

Signing Request
5 PRIVATE_KEY="broker.key" # Define the path client private key
6 EJBCA_P12_AUTH_FILE="SuperAdmin.p12" # Define the path to P12

authentication file EJBCA
7 EJBCA_PASSWORD_AUTH_FILE="foo123" # Define the password of P12

authentication file EJBCA
8 EJBCA_HOST="ejbca -node1 :8443" # Define the FQDN or IP address

EJBCA

3.3 Integration between EJBCA and application containers 18

9 EJBCA_TRUST_CHAIN="ManagementCA.pem" # Define the path trust
chain or single CA file EJBCA

10 EJBCA_USERNAME_END_ENTITY="superadmin" # Define the username
of the entity created EJBCA

11 EJBCA_CERTIFICATE_PROFILE_NAME="SERVER" # Define the
certificate profile name EJBCA

12 EJBCA_END_ENTITY_PROFILE_NAME="EMPTY" # Define the end entity
profile name EJBCA

13 EJBCA_CA_NAME="ManagementCA" # Define the CA name EJBCA
14 RETRY_CHECK_EJBCA =5 # Define the time to wait before retry the

EJBCA REST API availability
15 SERVICE_URL="http ://ejbca -node1 :8080/ ejbca/publicweb/

healthcheck/ejbcahealth" # Define the URL and port of the
EJBCA REST API service

16

17

18

19 # Define a function that request a X.509 certificate
20 request_x509_certificate () {
21 echo "[-] Certificate file not found , publisher requesting

certificate ..."
22 # Create a CSR
23 openssl req -new -out $CSR_FILE -newkey rsa :2048 -nodes -

sha256 -keyout $PRIVATE_KEY -subj "/CN=broker"
24

25 # Make the script runnable
26 chmod a+x pkcs10Enroll.sh
27

28 # Request the certificate
29 ./ pkcs10Enroll.sh \
30 -c "$CSR_FILE" \
31 -P "$EJBCA_P12_AUTH_FILE" \
32 -s "$EJBCA_PASSWORD_AUTH_FILE" \
33 -H "$EJBCA_HOST" \
34 -t "$EJBCA_TRUST_CHAIN" \
35 -u "$EJBCA_USERNAME_END_ENTITY" \
36 -p "$EJBCA_CERTIFICATE_PROFILE_NAME" \
37 -e "$EJBCA_END_ENTITY_PROFILE_NAME" \
38 -n "$EJBCA_CA_NAME"
39

40

41 # Rename the certificate
42 mv "$EJBCA_USERNAME_END_ENTITY.crt" "$CERT_FILE"
43

44 # Check the exit status of openssl
45 if [$? -eq 0]; then
46 echo "Certificate requested done correctly!"
47 # Copy the generated certificate and key inside the

broker container volume
48 cp $CERT_FILE /mosquitto/certs
49 cp $PRIVATE_KEY /mosquitto/keys
50 exit 0

3.3 Integration between EJBCA and application containers 19

51 else
52 echo "Error during certificate request! Check logs"
53 tail -f /dev/null #in case of error do not terminate to

run
54 fi
55 }
56

57

58

59 until $(curl --output /dev/null --silent --head --fail
$SERVICE_URL); do

60 echo "Waiting for the service to be available ..."
61 sleep $RETRY_CHECK_EJBCA
62 done
63

64 echo "[+] EJBCA available"
65

66

67

68 # Check if the certificate file exists
69 if [! -f "$CERT_FILE"]; then
70 request_x509_certificate
71 else
72

73 # Get the expiration date of the certificate
74 expiration_date=$(openssl x509 -in "$CERT_FILE" -noout -

enddate | cut -d= -f2)
75

76 # Convert the expiration date to Unix timestamp
77 expiration_timestamp=$(date -d "$expiration_date" +%s)
78

79 # Get the current Unix timestamp
80 current_timestamp=$(date +%s)
81

82 # Compare expiration date with current date
83 if ["$expiration_timestamp" -ge "$current_timestamp"];

then
84 echo "Certificate is valid. Expiration date:

$expiration_date"
85 exit 0
86 else
87 echo "Certificate has expired. Expiration date:

$expiration_date"
88 request_x509_certificate # Request a new certificate
89 fi
90 fi

Listing 3.2: req_crt.sh

is responsible for waiting for the PKI to be up and running and then checking
whether or not a digital certificate exists [6]. If not, it will be requested by calling

3.3 Integration between EJBCA and application containers 20

the pkcs10Enroll.sh script with the correct parameters:

1 #!/bin/bash
2

3 INPUT_HOSTNAME=""
4 INPUT_CERT_PROFILE=""
5 INPUT_END_ENTITY_PROFILE=""
6 INPUT_CA_NAME=""
7 INPUT_USERNAME=""
8 enrollment_code=""
9

10 help () {
11 echo "Usage: ‘basename $0 ‘ options"
12 echo "-c : the csr file"
13 echo "-P : the p12 file to authenticate with"
14 echo "-s : the p12 file password"
15 echo "-t : the Trust chain file for the TLS certificate"
16 echo "-H : the EJBCA FQDN or IP Address"
17 echo "-u : the username of the entity created in EJBCA"
18 echo "-p : the certificate profile name"
19 echo "-e : the end entity profile name"
20 echo "-n : the CA name"
21 echo "
22 This script will use the EJBCA REST API PKCS10Enroll endpoint

to submit CSR ’s for a certificate
23 "
24 }
25

26 while getopts "c:P:H:s:t:u:p:e:n:xh" optname ; do
27 case $optname in
28 c)
29 INPUT_CSR_FILE=$OPTARG ;;
30 P)
31 INPUT_P12_CREDENTIAL=$OPTARG ;;
32 s)
33 INPUT_P12_CREDENTIAL_PASSWD=$OPTARG ;;
34 t)
35 INPUT_TRUST_CHAIN=$OPTARG ;;
36 H)
37 INPUT_HOSTNAME=$OPTARG ;;
38 u)
39 INPUT_USERNAME=$OPTARG ;;
40 p)
41 INPUT_CERT_PROFILE=$OPTARG ;;
42 e)
43 INPUT_END_ENTITY_PROFILE=$OPTARG ;;
44 n)
45 INPUT_CA_NAME=$OPTARG ;;
46 x)
47 set -x ;;
48 h)

3.3 Integration between EJBCA and application containers 21

49 help ; exit 0 ;;
50 ?)
51 echo "Unknown option $OPTARG." ; help ; exit 1 ;;
52 :)
53 echo "No argument value for option $OPTARG." ; help ;

exit 1 ;;
54 *)
55 echo "Unknown error while processing options." ;;
56 esac
57 done
58

59 if [! -f "$INPUT_CSR_FILE"]; then
60 echo "Please try again with a csr"
61 exit 1
62 fi
63

64 if [! -f "$INPUT_P12_CREDENTIAL"]; then
65 echo "Please specify a P12 file"
66 exit 1
67 fi
68

69 csr="$(cat ${INPUT_CSR_FILE })"
70

71 template=’{" certificate_request ":$csr , "
certificate_profile_name ":$cp , "end_entity_profile_name ":
$eep , "certificate_authority_name ":$ca , "username ":$ee , "
password ":$pwd}’

72 json_payload=$(jq -n \
73 --arg csr "$csr" \
74 --arg cp "$INPUT_CERT_PROFILE" \
75 --arg eep "$INPUT_END_ENTITY_PROFILE" \
76 --arg ca "$INPUT_CA_NAME" \
77 --arg ee "$INPUT_USERNAME" \
78 --arg pwd "$enrollment_code" \
79 "$template")
80 echo $json_payload
81 if [-f "$INPUT_TRUST_CHAIN"]; then
82 curl -vv -k -X POST -s --cacert "$INPUT_TRUST_CHAIN" \
83 --cert -type P12 \
84 --cert "$INPUT_P12_CREDENTIAL:$INPUT_P12_CREDENTIAL_PASSWD

" \
85 -H ’Content -Type: application/json’ \
86 --data "$json_payload" \
87 "https ://${INPUT_HOSTNAME }/ ejbca/ejbca -rest -api/v1/

certificate/pkcs10enroll" \
88 | jq -r .certificate | base64 -d > "${INPUT_USERNAME}-der .

crt"
89 else
90 curl -vv -k -X POST -s \
91 --cert -type P12 \
92 --cert "$INPUT_P12_CREDENTIAL:$INPUT_P12_CREDENTIAL_PASSWD

" \

3.3 Integration between EJBCA and application containers 22

93 -H ’Content -Type: application/json’ \
94 --data "$json_payload" \
95 "https ://${INPUT_HOSTNAME }/ ejbca/ejbca -rest -api/v1/

certificate/pkcs10enroll" \
96 | jq -r .certificate | base64 -d > "${INPUT_USERNAME}-der .

crt"
97 fi
98

99 openssl x509 -inform DER -in "${INPUT_USERNAME}-der.crt" -
outform PEM -out "${INPUT_USERNAME }.crt"

Listing 3.3: pkcs10Enroll.sh

Finally, sidebroker container creation is handled through the Dockerfile-sidebroker
as shown below:

1 FROM ubuntu:latest
2

3 # This is necessary because the mounting volumes comes
after the building image in compose.yaml

4 COPY ./ sidebroker/ /sidebroker
5

6 WORKDIR /sidebroker
7

8 # Download and install all necessary packages
9 RUN apt -get update && apt -get install -y jq openssl curl

iputils -ping curl
10

11 RUN chmod a+x req_crt.sh
12

13 RUN chown root:root /sidebroker/req_crt.sh
14

15 ENTRYPOINT ["/bin/bash", "/sidebroker/req_crt.sh"]

Listing 3.4: Dockerfile-sidebroker

3.3.2 publisher and subscriber

The client images used for the purpose of application testing were deployed from
the image base provided by Canonical [1]. Here are the Dockerfiles of the publisher
and subscriber containers:

1 FROM ubuntu:latest
2

3 RUN apt -get update && apt -get install -y jq openssl curl
iputils -ping curl mosquitto -clients

3.3 Integration between EJBCA and application containers 23

4

5 COPY ./ publisher/ /publisher/
6

7 COPY ./ca-certs/ /publisher/ca -certs/
8

9 # Create a directory to store custom certificates
10 RUN mkdir -p /usr/local/share/ca -certificates
11

12 # Copy the custom certificate to the container
13 RUN cp /publisher/ca-certs /* /usr/local/share/ca -

certificates/
14

15 RUN apt -get update && apt -get install -y ca -certificates
&& update -ca -certificates

16

17 WORKDIR /publisher
18

19 RUN chmod +x req_crt.sh
20

21 RUN chown root:root /publisher/req_crt.sh
22

23 ENTRYPOINT ["/bin/bash", "/publisher/req_crt.sh"]

Listing 3.5: Dockerfile-publisher

1 FROM ubuntu:latest
2

3 RUN apt -get update && apt -get install -y jq openssl curl
iputils -ping curl mosquitto -clients

4

5 COPY ./ subscriber/ /subscriber/
6

7 COPY ./ca-certs/ /subscriber/ca -certs/
8

9 # Create a directory to store custom certificates
10 RUN mkdir -p /usr/local/share/ca -certificates
11

12 # Copy the custom certificate to the container
13 RUN cp /subscriber/ca -certs /* /usr/local/share/ca -

certificates/
14

15 RUN apt -get update && apt -get install -y ca -certificates
&& update -ca -certificates

16

17 WORKDIR /subscriber
18

3.3 Integration between EJBCA and application containers 24

19 RUN chmod +x req_crt.sh
20

21 RUN chown root:root /subscriber/req_crt.sh
22

23 ENTRYPOINT ["/bin/bash", "/subscriber/req_crt.sh"]

Listing 3.6: Dockerfile-subscriber

The creation of certificates for containers simulating MQTT clients (publishers
and subscribers) is done using the same scripts seen earlier for the sidebroker making
the necessary changes regarding the parameters and paths of the corresponding
volumes. Two bash scripts, subscribe.sh and publish.sh, were also developed
in order to speed up the distribution of MQTTS messages between publishers and
subscribers:

1 #!/bin/bash
2

3 # Configuration
4 BROKER_ADDRESS="broker"
5 BROKER_PORT="8883"
6 CA_CERT="ca -certs/ManagementCA.pem"
7 CLIENT_CERT="publisher.crt"
8 CLIENT_KEY="publisher.key"
9 TOPIC="LAB"

10

11 # Infinite loop for publishing messages with timestamp every
10 seconds

12 while true; do
13 TIMESTAMP=$(date +%s) # Get current Unix timestamp
14 MESSAGE="There is a new message! $(date)" # Append

formatted timestamp to your_message
15

16 mosquitto_pub -h "$BROKER_ADDRESS" -p "$BROKER_PORT" --
cafile "$CA_CERT" --cert "$CLIENT_CERT" --key "$CLIENT_KEY"
-t "$TOPIC" -m "$MESSAGE" -d --insecure

17 sleep 10 # Wait for 10 seconds before publishing again
18 done

Listing 3.7: publish.sh

1 # Configuration
2 BROKER_ADDRESS="broker"
3 BROKER_PORT="8883"
4 CA_CERT="ca -certs/ManagementCA.pem"
5 CLIENT_CERT="subscriber.crt"
6 CLIENT_KEY="subscriber.key"
7 TOPIC="LAB"

3.4 Configuration of Mosquitto broker 25

8

9

10 # Infinite loop for subscribing and receiving messages every
10 seconds

11 while true; do
12 mosquitto_sub -h "$BROKER_ADDRESS" -p "$BROKER_PORT" --

cafile "$CA_CERT" --cert "$CLIENT_CERT" --key "$CLIENT_KEY"
-t "$TOPIC" -d

13 sleep 10 # Wait for 10 seconds before subscribing again
14 done

Listing 3.8: subscribe.sh

3.4 Configuration of Mosquitto broker

Mosquitto broker is deployed from the Eclipse Foundation base image [9]. A copy
of ManagementCA’s certificate is added in order to trust any certificate issued by
ManagementCA and presented by clients during authentication:

1 FROM eclipse -mosquitto:latest
2

3 COPY ./ mosquitto/ /mosquitto/
4

5 COPY ./ca-certs/ /mosquitto/ca -certs/
6

7 #to trust the self -signed certificate CA
8 RUN cp /mosquitto/ca-certs /* /usr/local/share/ca -

certificates/
9

10 #update the trust store certificates
11 RUN update -ca -certificates

Listing 3.9: Dockerfile-mosquitto

Mosquitto broker at startup loads the certificate to be exposed in MQTTS commu-
nications, the private key and the certificate of the trusted CA for client authentica-
tion from the paths specified in the configuration file. The require_certificate
true setting in the Mosquitto configuration file requires clients to present a valid
certificate to authenticate to the MQTT server. Below is the mosquitto.conf con-
figuration file:

1 listener 8883 0.0.0.0
2 protocol mqtt
3 certfile /mosquitto/certs/broker.crt

3.4 Configuration of Mosquitto broker 26

4 keyfile /mosquitto/keys/broker.key
5 tls_version tlsv1 .3
6 require_certificate true
7 cafile /mosquitto/ca-certs/ManagementCA.pem
8 log_type all
9 allow_anonymous true

Listing 3.10: mosquitto.conf

27

Chapter 4

Proof of Concept

In this final chapter, significant moments and key procedures will be shown through
detailed screenshots. The screenshots presented here serve as a visual guide to under-
standing the operation, interactions, and crucial communication steps between the
various components of the implemented infrastructure. Via the command docker
compose logs -f launched within the secureiot parent folder, it is possible to ana-
lyze the logs of the entire deployment process performed with the compose docker.
In particular we note that both the sidebroker container and the MQTT clients
check for the existence and validity of a previously issued digital certificate that is
already present within the file system; if not, they request it via the scripts seen
earlier. Here is an example for the sidebroker container:

Figure 4.1: sidebroker requesting a certificate to EJBCA

28

(a) CURL command output (b) CURL command output

After this phase of certificate request and generation, the Mosquitto broker,
thanks to the specification in the compose.yaml of the depends_on, waits for the
service sidebroker to be successfully completed so that it can be started with the
certificates and keys needed for encrypted and authenticated communications:

Figure 4.3: Mosquitto wait sidebroker to complete succesfully

We enter inside the application containers via the commands docker exec -it
subscriber /bin/bash and docker exec -it publisher /bin/bash and run the
scripts to send/receive the MQTT messages seen earlier. By launching the two
scripts seen above, subscribe.sh and publish.sh respectively, we notice that con-
nections with the broker are established without any error and messages are delivered
correctly:

29

Figure 4.4: MQTTS Message Exchange

in red we have the messages sent by the publisher, in blue those received by the
subscriber, and in yellow the logs of correct dispatching of messages by the broker.

30

Conclusion

The following project allowed the development of an advanced and comprehensive
laboratory focused on the integration of several open-source components. This lab
was designed to simulate a real IoT environment, with particular attention to the
management of digital certificates and in reference especially to the use of MQTT
and TLS protocols in order to ensure high security in the IoT environment, a mode
now pervasive in our daily reality. I would like to thank Prof. Michele Pagano and
Prof. Rosario Giuseppe Garroppo for their guidance and constant support during
the implementation of this project. They played a key role in guiding the project,
providing valuable advice, stimuli and insights that greatly enriched the learning
journey and the realization of the lab.

BIBLIOGRAPHY 31

Bibliography

[1] Canonical. Ubuntu Image on Docker Hub. https://hub.docker.com/_/ubuntu,
2023. [Online; accessed 11-December-2023].

[2] Docker Documentation. Install Docker Compose. https://docs.docker.com/
compose/install/, 2023. [Online; accessed 11-December-2023].

[3] Docker Documentation. Install Docker Engine. https://docs.docker.com/
engine/install/, 2023. [Online; accessed 11-December-2023].

[4] EJBCA PKI Documentation. Create Administrator Ac-
count. https://doc.primekey.com/ejbca/tutorials-and-guides/
tutorial-start-out-with-ejbca-docker-container#
TutorialStartoutwithEJBCADockercontainer-CreateAdministratorAccount,
2023. [Online; accessed 11-December-2023].

[5] EJBCA PKI Documentation. EJBCA Create a Root CA.
https://doc.primekey.com/ejbca/tutorials-and-guides/
tutorial-create-your-first-root-ca-using-ejbca, 2023. [Online; ac-
cessed 11-December-2023].

[6] EJBCA PKI Documentation. EJBCA Healtcheck. https://doc.
primekey.com/ejbca/ejbca-operations/ejbca-operations-guide/
ca-operations-guide/ejbca-maintenance/monitoring-and-healthcheck,
2023. [Online; accessed 11-December-2023].

[7] EJBCA PKI Documentation. EJBCA REST Interface. https:
//doc.primekey.com/ejbca/ejbca-operations/ejbca-ca-concept-guide/
protocols/ejbca-rest-interface#:~:text=The%20EJBCA%20Certificate%
20Management%20REST,(non%2Dexternal)%20CA., 2023. [Online; accessed
11-December-2023].

[8] EJBCA PKI Documentation. Start out with EJBCA Docker con-
tainer. https://doc.primekey.com/ejbca/tutorials-and-guides/
tutorial-start-out-with-ejbca-docker-container, 2023. [Online; ac-
cessed 11-December-2023].

BIBLIOGRAPHY 32

[9] Eclipse Foundation. Mosquitto Image on Docker Hub. https://hub.docker.
com/_/eclipse-mosquitto, 2023. [Online; accessed 11-December-2023].

